شبكة بحوث وتقارير ومعلومات

مرحبا بكم في شبكة بحوث وتقارير ومعلومات

اليوم الأربعاء 22 مايو 2024 - 1:22 م


اخر المشاهدات
الأكثر قراءة


عناصر الموضوع




القسم العام

[ تعرٌف على ] ميكانيكا الكم # أخر تحديث اليوم 2024/05/22

تم النشر اليوم 2024/05/22 | ميكانيكا الكم

أمثلة

جسيم حر المقالة الرئيسة: جسيم حر
كثافة احتمال موقع الفضاء لحزمة موجة غاوسية تتحرك في بعد واحد في الفضاء الحر.
أبسط مثال على نظام كمي بدرجة حرية موقعية هو جسيم حر في بُعد مكاني واحد. الجسيم الحر هو الذي لا يخضع لتأثيرات خارجية، لذلك فإن الهاميلتوني يتكون فقط من طاقته الحركية: H
=
1 2
m
P 2
=
− ℏ 2 2
m
d 2 d x 2 {displaystyle H={frac {1}{2m}}P^{2}=-{frac {hbar ^{2}}{2m}}{frac {d^{2}}{dx^{2}}}}
يعطى الحل العام لمعادلة شرودنغر بواسطة ψ
(
x
,
t
)
=
1 2
π
∫ −

∞ ψ
^ (
k
,
0
) e i
(
k
x
− ℏ k 2
2
m t
) d k
{displaystyle psi (x,t)={frac {1}{sqrt {2pi }}}int _{-infty }^{infty }{hat {psi }}(k,0)e^{i(kx-{frac {hbar k^{2}}{2m}}t)}mathrm {d} k}
وهو تراكب لجميع الموجات المستوية الممكنة
e i
(
k
x
− ℏ k 2
2
m t
)
{displaystyle e^{i(kx-{frac {hbar k^{2}}{2m}}t)}} ، وهي حالات ذاتية لمؤثر الزخم مع الزخم p
=

k
{displaystyle p=hbar k} . معاملات التراكب هي
ψ
^ (
k
,
0
)
{displaystyle {hat {psi }}(k,0)} ، وهو تحويل فورييه للكم الأولي الحالة ψ
(
x
,
0
)
{displaystyle psi (x,0)} . من غير الممكن أن يكون الحل عبارةً عن حالةٍ ذاتيةٍ واحدةٍ للزخم، أو حالةٍ ذاتيةٍ وحيدةِ الموقع، لأن هذه ليست حالاتٍ كموميةً قابلةً للتطبيع.[note 3] بدلاً من ذلك توصف حزمة الموجة الغاوسية كما يأتي: ψ
(
x
,
0
)
=
1
π
a
4 e − x 2 2
a {displaystyle psi (x,0)={frac {1}{sqrt[{4}]{pi a}}}e^{-{frac {x^{2}}{2a}}}}
ويُوصف توزيع الزخم بعد إنجاز تحويل فورييه
ψ
^ (
k
,
0
)
= a
π
4
e − a k 2 2
{displaystyle {hat {psi }}(k,0)={sqrt[{4}]{frac {a}{pi }}}e^{-{frac {ak^{2}}{2}}}}
عندما يَتضاءل a
a فإن الانتشار في الموقع يصبح أصغر، لكن انتشار الزخم يغدو أكبر. بالمقابل من خلال جعل a
a أكبر، فإنّا نجعل الانتشار في الزخم أصغر، لكن الانتشار في الموقع يصبح أكبر، وهذا يوضح مبدأ اللايقين. عندما ندع حزمة الموجة الغاوسية تنمو بمرور الوقت نرى أن مركزها يتحرك عبر الفضاء بسرعةٍ ثابتةٍ (مثل جسيم كلاسيكي دونما أي قوىً تؤثر عليه)، ومع ذلك فإن الحزمة الموجية ستنتشر أيضًا بتقدم الوقت، مما يعني أن الموقع يصبح غير مؤكدٍ أكثر فأكثر. ورغم ذلك فإن عدم اليقين في الزخم يظل ثابتًا. جسيم في صندوق المقالة الرئيسة: جسيم في صندوق
صندوق طاقة وضع وحيد البعد (أو بئر الجهد اللانهائي).
يعتبر الجسيم الموجود في صندوق طاقة كامنة (وضع) وحيد البعد هو المثال الأكثر بساطة من الناحية الحسابية وعندها تؤدي القيود إلى تكميم مستويات الطاقة. يُعرّف الصندوق بأنه لا يحتوي على طاقة كامنة في كل مكان داخل منطقة معينة، وبالتالي طاقة كامنة غير محدودة في كل مكان خارج تلك المنطقة. :77–78 بالنسبة للحالة وحيدة البعد في اتجاه x
x ، يمكن كتابة معادلة شرودنغر المستقلة عن الوقت − ℏ 2 2
m d 2
ψ
d x 2 =
E
ψ
{displaystyle -{frac {hbar ^{2}}{2m}}{frac {d^{2}psi }{dx^{2}}}=Epsi }
مع المؤثر التفاضلي المحدد بواسطة p
^
x
=

i

d d
x {displaystyle {hat {p}}_{x}=-ihbar {frac {d}{dx}}}
المعادلة السابقة تستحضر نظير الطاقة الحركية الكلاسيكي، 1 2
m p
^
x
2
=
E
{displaystyle {frac {1}{2m}}{hat {p}}_{x}^{2}=E}
مع الحالة ψ
psi في هذه الحالة تحتوي على طاقة E
E تتطابق مع الطاقة الحركية للجسيم. الحلول العامة لمعادلة شرودنغر للجسيم في الصندوق هي ψ
(
x
)
=
A e i
k
x
+
B e −
i
k
x
E
=
ℏ 2 k 2
2
m {displaystyle psi (x)=Ae^{ikx}+Be^{-ikx}qquad qquad E={frac {hbar ^{2}k^{2}}{2m}}}
أو، من صيغة أويلر، ψ
(
x
)
=
C
sin

(
k
x
)
+
D
cos

(
k
x
) {displaystyle psi (x)=Csin(kx)+Dcos(kx)!}
تحدد الجدران المحتملة اللانهائية للمربع قيم C
,
D
,
{displaystyle C,D,} و k
k عند x
=
0
{displaystyle x=0} و x
=
L
{displaystyle x=L} وفيها يجب أن تكون ψ
psi صفرًا. وبالتالي، عند x
=
0
{displaystyle x=0} ، ψ
(
0
)
=
0
=
C
sin

(
0
)
+
D
cos

(
0
)
=
D
{displaystyle psi (0)=0=Csin(0)+Dcos(0)=D}
و D
=
0
{displaystyle D=0} . عند x
=
L
{displaystyle x=L} ، ψ
(
L
)
=
0
=
C
sin

(
k
L
)
{displaystyle psi (L)=0=Csin(kL)}
لا يمكن أن تكون C
{displaystyle C} تساوي صفرًا لأن هذا سيتعارض مع الافتراض بأن ψ
psi لها المعيار 1. لذلك، فإن sin

(
k
L
)
=
0
{displaystyle sin(kL)=0} ،‏ k
L
{displaystyle kL} يجب أن يكون عددًا صحيحًا مضاعفًا لـ π
{displaystyle pi } ، k
= n
π L
n
=
1
,
2
,
3
,

.
{displaystyle k={frac {npi }{L}}qquad qquad n=1,2,3,ldots .}
هذا القيد على k
k يعني قيدًا على مستويات الطاقة، مما ينتج عنه
E n
=
ℏ 2 π 2 n 2
2
m L 2 =
n 2 h 2
8
m L 2 {displaystyle E_{n}={frac {hbar ^{2}pi ^{2}n^{2}}{2mL^{2}}}={frac {n^{2}h^{2}}{8mL^{2}}}}
إن بئر الجهد المحدود هو تعميم مشكلة بئر الجهد اللانهائي على الآبار الجهدية ذات العمق المحدود. مشكلة البئر المحدود هي أكثر تعقيدًا من الناحية الرياضية من مشكلة الجسيم اللانهائي في المربع لأن دالة الموجة ليست مثبتة على الصفر عند جدران البئر. بدلاً من ذلك، يجب أن تفي دالة الموجة بشروط حدودية رياضية أكثر تعقيدًا لأنها ليست صفرية في مناطق خارج البئر. مشكلة أخرى ذات صلة هي مشكلة حاجز الجهد المستطيل، الذي يقدم نموذجًا لتأثير النفق الكمي الذي يلعب دورًا مهمًا في أداء التقنيات الحديثة مثل ذاكرة الفلاش ومجهر المسح النفقي. هزاز توافقي المقالة الرئيسة: هزاز توافقي
بعض مسارات الهزاز التوافقي (أي كرة متصلة بنابض) في الميكانيكا الكلاسيكية (A-B) وميكانيكا الكم (C-H). في ميكانيكا الكم، يجري تمثيل موقع الكرة بموجة (تسمى الدالة الموجية)، مع إظهار الجزء الحقيقي باللون الأزرق والجزء التخيلي باللون الأحمر. بعض المسارات (مثل C وD وE وF) هي موجات واقفة (أو «حالات ثابتة»). يتناسب كل تردد موجة واقفة مع مستوى طاقة هزاز محتمل. لا يحدث «تكميم الطاقة» هذا في الفيزياء الكلاسيكية، حيث يمكن أن يكون للهزاز أي طاقة.
كما في الحالة الكلاسيكية، تعطى طاقة وضع الاهتزاز التوافقي الكمومي بواسطة V
(
x
)
=
1
2
m ω 2 x 2
{displaystyle V(x)={frac {1}{2}}momega ^{2}x^{2}}
يمكن معالجة هذه المشكلة إما عن طريق حل معادلة شرودنغر مباشرةً، وهي ليست بسيطة، أو باستخدام «طريقة السلم» الأكثر أناقة التي اقترحها بول ديراك لأول مرة. تعطى حالات ذاتية بواسطة
ψ n
(
x
)
= 1
2 n n
!

( m
ω
π
ℏ )
1 / 4
⋅ e − m
ω x 2
2
ℏ ⋅ H n ( m
ω ℏ x ) , {displaystyle psi _{n}(x)={sqrt {frac {1}{2^{n},n!}}}cdot left({frac {momega }{pi hbar }}right)^{1/4}cdot e^{-{frac {momega x^{2}}{2hbar }}}cdot H_{n}left({sqrt {frac {momega }{hbar }}}xright),qquad }
n
=
0
,
1
,
2
,

.
{displaystyle n=0,1,2,ldots .}
حيث Hn هي كثيرات حدود هيرامايت
H n
(
x
)
=
(

1 ) n e
x 2 d n d x n
( e − x 2
) {displaystyle H_{n}(x)=(-1)^{n}e^{x^{2}}{frac {d^{n}}{dx^{n}}}left(e^{-x^{2}}right)}
ومستويات الطاقة المقابلة
E n
=

ω ( n
+
1
2 ) {displaystyle E_{n}=hbar omega left(n+{1 over 2}right)}
هذا مثال آخر يوضح تقديرية الطاقة للحالات المقيدة. مقياس التداخل ماخ زيندر المقالة الرئيسة: مقياس التداخل ماخ زيندر
رسم تخطيطي لمقياس تداخل ماخ-زيندر.
يوضح مقياس التداخل ماخ-زيندر (MZI) مفاهيم التراكب والتداخل مع الجبر الخطي في البعد 2، بدلاً من المعادلات التفاضلية. يمكن اعتبارها نسخة مبسطة من تجربة الشق المزدوج، لكنها ذات أهمية بحد ذاتها، على سبيل المثال في ممحاة الكم للاختيار المتأخر، واختبار قنبلة إليزور- فايدمان، وفي دراسات التشابك الكمي. يُنمذَج فوتون يمر عبر مقياس التداخل أخذاً بالحسبان وجود تراكب من مسارين فقط عند كل نقطة: المسار «الأسفل» الذي يبدأ من اليسار، ويمر مباشرة من خلال كل من مقسم الأشعة، وينتهي في الأعلى، والمسار «الأعلى» الذي يبدأ من الأسفل، ويمر مباشرة عبر مقسم الأشعة، وينتهي عند اليمين. وبالتالي فإن الحالة الكمومية للفوتون هي متجه ψ

C
2
{displaystyle psi in mathbb {C} ^{2}} وهو تراكب للمسار «الأسفل»
ψ l
=
( 1
0 )
{displaystyle psi _{l}={begin{pmatrix}1\0end{pmatrix}}} والمسار «الأعلى»
ψ u
=
( 0
1 )
{displaystyle psi _{u}={begin{pmatrix}0\1end{pmatrix}}} ، أي ψ
=
α ψ l
+
β ψ u
{displaystyle psi =alpha psi _{l}+beta psi _{u}} α
,
β
{displaystyle alpha ,beta } العقديان. من أجل احترام الافتراض بأن ⟨
ψ
,
ψ

=
1
{displaystyle langle psi ,psi rangle =1} يتطلب ذلك
| α
|
2
+ | β
|
2
=
1
{displaystyle |alpha |^{2}+|beta |^{2}=1} . صمم كلا مقسمي الأشعة على شكل المصفوفة الوحدوية B
=
1 2 ( 1
i
i
1 )
{displaystyle B={frac {1}{sqrt {2}}}{begin{pmatrix}1&i\i&1end{pmatrix}}} ، مما يعني أنه عندما يلتقي الفوتون بمقسم الأشعة، فإنه إما سيبقى على المسار نفسه بسعة احتمالية تبلغ 1 / 2
{displaystyle 1/{sqrt {2}}} ، أو الانعكاس على المسار الآخر بسعة احتمالية تبلغ i / 2
{displaystyle i/{sqrt {2}}} . صمم ناقل الطور في الجزء الأعلى من الذراع على شكل المصفوفة الوحدوية P
=
( 1
0
0 e i
Δ
Φ )
{displaystyle P={begin{pmatrix}1&0\0&e^{iDelta Phi }end{pmatrix}}} ، مما يعني أنه إذا كان الفوتون على المسار «الأعلى»، فسيحصل على طور نسبي من Δ
Φ
{displaystyle Delta Phi } ، وسيبقى دون تغيير إذا كان في المسار الأسفل. سيجري بعد ذلك العمل على الفوتون الذي يدخل مقياس التداخل من اليسار باستخدام مقسم الأشعة B
B ، وناقل طور P
P ، ومقسم أشعة آخر B
B ، وهكذا ينتهي الأمر في الحالة B
P
B ψ l
=
i e i
Δ
Φ / 2
( −
sin

(
Δ
Φ / 2
)
cos

(
Δ
Φ / 2
) )
{displaystyle BPBpsi _{l}=ie^{iDelta Phi /2}{begin{pmatrix}-sin(Delta Phi /2)\cos(Delta Phi /2)end{pmatrix}}}
والاحتمالات التي سيجري اكتشافها على اليمين أو في الأعلى تعطى على التوالي بواسطة p
(
u
)
= | ⟨ ψ u
,
B
P
B ψ l

|
2
= cos 2
⁡ Δ
Φ 2
,
{displaystyle p(u)=|langle psi _{u},BPBpsi _{l}rangle |^{2}=cos ^{2}{frac {Delta Phi }{2}},}
p
(
l
)
= | ⟨ ψ l
,
B
P
B ψ l

|
2
= sin 2
⁡ Δ
Φ 2
{displaystyle p(l)=|langle psi _{l},BPBpsi _{l}rangle |^{2}=sin ^{2}{frac {Delta Phi }{2}}}
لذلك يُستخدم مقياس التداخل ماخ زيندر لتقدير انزياح الطور من خلال تقدير هذه الاحتمالات. ماذا يحدث لو كان الفوتون إما في المسار «الأسفل» أو «الأعلى» بين مقسم الأشعة؟ يمكن تحقيق ذلك عن طريق سد أحد المسارات، وأيضاً عن طريق إزالة مقسم الأشعة الأول (وتغذية الفوتون من اليسار أو من الأسفل، حسب الرغبة). في كلتا الحالتين لن يكون هناك تداخل بين المسارات بعد الآن، وتعطى الاحتمالات بواسطة p
(
u
)
=
p
(
l
)
=
1 / 2
{displaystyle p(u)=p(l)=1/2} ، بصرف النظر عن الطور Δ
Φ
{displaystyle Delta Phi } . يعني هذا أن الفوتون لا يأخذ مسارًا أو آخر بعد مقسم الأشعة الأول، بل إنه في تراكب كمي حقيقي للمسارين.

تطبيقات

نجحت ميكانيكا الكم نجاحًا هائلاً في شرح العديد من سمات الكون، خاصةً فيما يتعلق بالكميات الصغيرة والمنفصلة والتفاعلات التي لا يمكن تفسيرها بالطرق الكلاسيكية.[note 4] غالبًا ما تكون ميكانيكا الكم النظريةَ الوحيدةَ التي يمكن أن تكشف عن السلوكيات الفردية للجسيمات دون الذرية التي تكوّن أشكال المادة كلها (الإلكترونات والبروتونات والنيوترونات والفوتونات وغيرها). كما تعتمد فيزياء الحالة الصلبة وعلوم المواد على ميكانيكا الكم. تعمل التقانة الحديثة في العديد من الجوانب في النطاق الذي تكون فيه التأثيرات الكمية كبيرةً. تشمل التطبيقات المهمة لنظرية الكم كيمياء الكم، والبصريات الكمومية، والحوسبة الكمومية، والمغناطيسات فائقة التوصيل، والصمامات الثنائية الباعثة للضوء، والمضخم البصري والليزر، والترانزستور وأشباه الموصلات مثل المعالج الدقيق، والتصوير الطبي والبحثي مثل التصوير بالرنين المغناطيسي والمجهر الإلكتروني. إن تفسير العديد من الظواهر الحيوية والفيزيائية متجذرة في طبيعة الرابطة الكيميائية، وأبرزها الحمض النووي للجزيء-الضخم.

تاريخ

المقالات الرئيسة: تاريخ ميكانيكا الكم ونظرية ذرية
يعتبر ماكس بلانك والد ومؤسس نظرية الكم.
طُوِّرت ميكانيكا الكم في العقود الأولى من القرن العشرين مدفوعةً بالحاجة إلى تفسير الظواهر التي لوحظت في بعض الحالات في أوقاتٍ سابقة. بدأ البحث العلمي في الطبيعة الموجية للضوء في القرنين السابع عشر والثامن عشر، عندما اقترح علماء مثل روبرت هوك وكريستيان هوغنس وليونهارت أويلر النظرية الموجية للضوء بناءً على الملاحظات التجريبية. وفي عام 1803 وصف الموسوعي الإنجليزي توماس يانغ تجربة الشق المزدوج الشهيرة، الني لعبت دورًا رئيسيًا في القبول العام للنظرية الموجية للضوء. ثمَّن البحث الكيميائي لجون دالتون وأميديو أفوجادرو للنظرية الذرية للمادة في أوائل القرن التاسع عشر، وهي فكرة بنى عليها جيمس كليرك ماكسويل ولودفيغ بولتزمان وآخرون لتأسيس النظرية الحركية للغازات، وقد أعطت نجاحات هذه النظرية مزيدًا من المصداقية لفكرة أن المادة تتكون من ذراتٍ، ومع ذلك كانت للنظرية أيضًا أوجه قصور لا يمكن حلها إلا من خلال تطوير ميكانيكا الكم. في حين كان المفهوم المبكر للذرات منذ الفلسفة اليونانية أنها وحدات غير قابلة للتجزئة (كلمة «ذرة» مشتقة من اليونانية بمعنى «غير قابلة للتجزئة») شهد القرن التاسع عشر صياغة فرضياتٍ حول التركيب دون الذري، وكان أحد الاكتشافات المهمة في هذا الصدد هو ملاحظة مايكل فاراداي عام 1838 لتوهجٍ ناجمٍ عن تفريغٍ كهربائيٍّ داخل أنبوبٍ زجاجيٍّ يحتوي على غازٍ عند ضغطٍ منخفض. واصل يوليوس بلوكر ويوهان فيلهلم هيتورف ويوجين غولدشتاين عمل فاراداي وحسنوه، ثم وُصِفت الأشعة المهبطية، والتي وجد جوزيف جون طومسون أنها تتكون من جسيماتٍ دون ذريةٍ تسمى إلكترونات. اكتشف غوستاف كيرشهوف مشكلة إشعاع الجسم الأسود في عام 1859. وفي عام 1900 اقترح ماكس بلانك فرضية أن الطاقة تُشع وتُمتص على شكل «كوانتا» منفصلة (أو حزم طاقة) ينتج عنه حساب يطابق بدقةٍ الأنماط المرصودة لإشعاع الجسم الأسود. كلمة «كم» مشتقة من اللاتينية، وتعني «كم هو عظيم» أو «كم الثمن». تُقسَّم كميات الطاقة وفقًا لبلانك إلى «عناصرَ» يتناسب مقدارها (E) مع ترددها (ν): E
=
h
ν

{displaystyle E=hnu } ،
وفيها h هو ثابت بلانك. أصر بلانك بحذرٍ على أن هذا ليس إلا جانبًا من جوانب عمليات امتصاص الإشعاع وانبعاثه وبأنه مغاير للواقع المادي للإشعاع. في الواقع اعتبرت فرضيته “المبدأ الكمي” خدعةً رياضيةً للوصول إلى الإجابة الصحيحة بدلاً من اكتشافٍ كبير. ومع ذلك ففي عام 1905 فسر ألبرت أينشتاين فرضية بلانك الكمومية تفسيرًا واقعيًّا، واستخدمها لشرح التأثير الكهروضوئي، وفيها يمكن للضوء الساطع على موادَّ معينةٍ أن يسبب قذف الإلكترونات من المادة. ثم طور نيلز بور أفكار بلانك حول الإشعاع إلى نموذج بور لذرة الهيدروجين والذي تنبأ بنجاحٍ بالخطوط الطيفية للهيدروجين. طور أينشتاين هذه الفكرة أيضًا لإظهار أن الموجة الكهرومغناطيسية مثل الضوء يمكن أيضًا أن توصف بأنها جسيمات (سميت فيما بعد بالفوتونات) مع كميةٍ منفصلةٍ من الطاقة تعتمد على ترددها. وفي ورقته البحثية «حول نظرية الكم للإشعاع» توسع أينشتاين في قضية التفاعل بين الطاقة والمادة لشرح امتصاص الطاقة وانبعاثها بواسطة الذرات. وعلى الرغم من أن نظريته النسبية العامة طغت على بحثه هذا في ذلك الوقت، إلا أنه أوضح الآلية الكامنة وراء الانبعاث المحفز للإشعاع، والذي أصبح مبدأ الليزر. كان مؤتمر سولفاي لعام 1927 في بروكسل هو المؤتمر العالمي الخامس للفيزياء.
تُعرف هذه المرحلة بنظرية الكم القديمة، والتي لم تكن مكتملةً أو متسقةً مع ذاتها، بل عبارةً عن مجموعةٍ من التصحيحات التجريبية للميكانيكا الكلاسيكية. تُفهم النظرية الآن على أنها تقريب شبه كلاسيكي لميكانيكا الكم الحديثة. تشمل النتائج الملحوظة من تلك الفترة بالإضافة إلى أعمال بلانك وأينشتاين وبور المذكورة أعلاه، عمل أينشتاين وبيتر ديباي حول الحرارة النوعية للمواد الصلبة وبرهان نيلز بور وهندريكا جوانا فان ليوين على أن الفيزياء الكلاسيكية لا يمكن أن تفسر المغناطيسية المعاكسة، وتوسيع أرنولد سومرفيلد لنموذج بور ليشمل التأثيرات النسبية الخاصة. أصبحت ميكانيكا الكم الصيغة القياسية المستعملة لوصف الفيزياء الذرية بحلول العشرينيات من القرن الماضي. طرح الفيزيائي الفرنسي لويس دي بروي نظريته عن موجات المادة في عام 1923 قائلًا إن الجسيمات يمكن أن تظهر خصائص الموجة والعكس بالعكس. وفقاً لمنهج دي بروي فقد وُلدت ميكانيكا الكم الحديثة في عام 1925 عندما طور الفيزيائيون الألمان فيرنر هايزنبيرغ وماكس بورن وباسكوال جوردان ميكانيكا المصفوفة ووضع الفيزيائي النمساوي إرفين شرودنغر ميكانيكا الموجات. قدم بورن التفسير الاحتمالي لوظيفة شرودنغر الموجية في يوليو 1926. وهكذا ظهر مجال فيزياء الكم بأكمله، مما أدى إلى قبوله على نطاق واسع في مؤتمر سولفاي الخامس عام 1927. وحَّد ديفيد هيلبرت وبول ديراك وجون فون نيومان ميكانيكا الكم بحلول عام 1930 وأضفَوا عليها الطابع الرسمي مع التركيز تركيزاً أكبر على القياس والطبيعة الإحصائية لمعرفتنا بالواقع والتكهنات الفلسفية حول “المراقب”. ومنذ ذلك الحين تغلغلت في العديد من التخصصات، بما في ذلك كيمياء الكم، والإلكترونيات الكمومية، والبصريات الكمومية، وعلم المعلومات الكمومية، كما يوفر إطارًا مفيدًا للعديد من ميزات الجدول الدوري الحديث للعناصر، ويصف سلوك الذرات أثناء الترابط الكيميائي وتدفق الإلكترونات في أشباه الموصلات الحاسوبية، وبذا يلعب دورًا حاسمًا في العديد من التقانات الحديثة. وبينما أنشئت ميكانيكا الكم لوصف عالم الأشياء بالغة الصغر، إلا أنها ضرورية أيضًا لشرح بعض الظواهر العيانية مثل الموصلات الفائقة[note 8] والموائع الفائقة.

نظرة عامة ومفاهيم رئيسة

تسمح ميكانيكا الكم بحساب خصائص الأنظمة الفيزيائية وسلوكها. وهي تطبق عادةً على الأنظمة المجهرية: كالجزيئات والذرات والجسيمات دون الذرية. وقد أُثبتت قدرتها على الاحتفاظ بالجزيئات المعقدة التي تحتوي على آلاف الذرات، ولكن تطبيقها على البشر يثير مشكلاتٍ فلسفيةٍ، مثل صديق ويغنر، ويظل تطبيقها على الكون كله تخمينيًا. تحقق العلماء من تنبؤات ميكانيكا الكم من خلال التجربة بدرجةٍ عاليةٍ من الدقة.[note 1] تكمن السمة الرئيسة لميكانيكا الكم في عدم قدرتها على التنبؤ على وجه اليقين بما سيحدث، وتقديمها احتمالاتٍ عوضًا عن ذلك. يُحسَب الاحتمال رياضيًا بأخذ مربع القيمة المطلقة لعدد مركب، والمعروف باسم “سعة الاحتمال”. يُعرف هذا باسم قاعدة بورن، والتي سميت على اسم الفيزيائي ماكس بورن. فمثلًا يمكن وصف جسيمٍ كميٍّ مثل الإلكترون بواسطة دالة موجية تربط كل نقطةٍ في الفضاء بسعةٍ احتمالية. إن تطبيق قاعدة بورن على هذه السعات يعطي دالة الكثافة الاحتمالية للموقع الذي سيوجد فيه الإلكترون عند إجراء تجربةٍ لتعيين مكانه، وهذا أفضل ما يمكن للنظرية أن تقدمه؛ فهي لا يمكنها تحديد موقع الإلكترون على وجه اليقين. وتقوم معادلة شرودنغر بربط مجموعة السعات الاحتمالية لموقع لإلكترون المتعلقة بلحظةٍ زمنيةٍ معينةٍ يمجموعة السعات الاحتمالية المتعلقة بلحظةٍ زمنيةٍ أخرى. إحدى نتائج القواعد الرياضية لميكانيكا الكم هي المقايضة حول إمكانية التنبؤ بين الكمومات المختلفة القابلة للقياس. تشير الصيغة الأكثر شهرةَ لمبدأ اللايقين هذا إلى أنه -وبغض النظر عن كيفية تحضير الجسيم الكمي أو مدى دقة ترتيب التجارب عليه- فإن من المستحيل وجود تنبؤٍ دقيقٍ لقياس كلا موقعه وزخمه في الوقت نفسه. تعد ظاهرة التداخل الكمي إحدى النتائج الأخرى للقواعد الرياضية لميكانيكا الكم، وهي غالبًا ما تتضَّح من خلال تجربة الشق المزدوج. في النسخة الأصلية من هذه التجربة يُضيء مصدر ضوءٍ متسقٍ -كشعاع ليزر مثلًا- صفيحةً مثقوبةً بشقين متوازيين، ويلاحظ الضوء الذي يمر عبر الشقين على شاشةٍ تقع خلف الصفيحة المثقوبة. :1.1–1.8 :102–111 تتسبب الطبيعة الموجية للضوء في تداخل موجات الضوء التي تعبر الشقين، مما ينتج عنه نطاقات ساطعة ومظلمة على الشاشة؛ وهي نتيجة لا يمكن توقعها إذا كان الضوء يتكون من جسيماتٍ كلاسيكية. ومع ذلك دائمًا ما يُمتص الضوء على الشاشة عند نقاطٍ منفصلةٍ كجسيماتٍ فرديةٍ بدلًا من موجاتٍ؛ ويَظهر نمط التداخل من خلال الكثافة المتغيرة لاصطدامات هذه الجسيمات على الشاشة. علاوةً على ذلك وَجدت نسخٌ لاحقة للتجربة تتضمن وضع كاشفاتٍ عند الشقوق أن كل فوتون مكتشَفٍ يمر من خلال شقٍّ واحدٍ (كما هو الحال مع الجسيم الكلاسيكي)، وليس عبر كلا الشقين (كما الحال بالنسبة للموجة). :109 ومع ذلك فإن مثل هذه التجارب تظهر أن الجسيمات لا تشكل نمط التداخل إذا اكتشف المرء الشق الذي تمر من خلاله. عُثر على جسيماتٍ أخرى ذات مقاسٍ ذريٍّ -مثل الإلكترونات- تُظهر السلوك نفسه عند إطلاقها نحو شقٍّ مزدوج. وهو السلوك الذي يُعرف بازدواجية موجة-جسيم. تنبأت ميكانيكا الكم بظاهرةٍ أخرى غير بدهيّةٍ هي ظاهرة النفق الكمومي، وفيها يمكن للجسيم الذي يتقدم باتجاه حاجز جهدي أن يتخطاه ولو كانت طاقته الحركية أصغر من الحد الأقصى المحتمل. بينما في الميكانيكا الكلاسيكية سيجري احتجاز هذا الجسيم. ثمة نتائج عديدة مهمة للنفق الكمي مرتبطة بالاضمحلال الإشعاعي، وبالاندماج النووي في النجوم، وتطبيقات مثل مجهر المسح النفقي وثنائي المساري النفقي. عندما تتفاعل الأنظمة الكمومية يمكن أن تكون النتيجة إنشاء تشابك كمي: فتصبح خصائصها متشابكةً لدرجة أن وصف الكل بالاعتماد على الأجزاء الفردية فقط لا يعود ممكنًا. دعا إرفين شرودنغر التشابكَ «… السمةَ المميزةَ لميكانيكا الكم التي تفرض خروجها بالكامل عن خطوط الفكر الكلاسيكية». يتيح التشابك الكمي الخصائص غير البدهيّةِ للتخاطر الزائف الكمي، ويمكن أن يكون موردًا قيّمًا في بروتوكولات الاتصال، مثل توزيع المفاتيح الكمومية والترميز فائق الكثافة. وعلى عكس الاعتقاد الخاطئ الشائع لا يسمح التشابك بإرسال إشاراتِ أسرع من الضوء، كما يتضح من نظرية عدم الاتصال. ثمة احتمال آخر ممكن ينتج عن التشابك الكمي هو اختبار «المتغيرات الخفية»، وهي خصائص افتراضية أكثر جوهريةً من الكمومات التي تتناولها نظرية الكم نفسها، ومن شأنها أن تسمح بتنبؤاتٍ أكثر دقةً مما توفره نظرية الكم. أظهرت مجموعة من النتائج -وأهمها مبرهنة بل- أن الفئات العريضة من نظريات المتغيرات الخفية هي في الواقع غير متوافقةٍ مع فيزياء الكم. وفقًا لمبرهنة بل إذا كانت الطبيعة تعمل بالفعل طبقًا لأي نظريةٍ لمتغيراتٍ محليةٍ خفيةٍ، فإن نتائج “اختبار بل” ستكون مقيَّدةً بطريقةٍ معينةٍ قابلةٍ للقياس الكمي. أجري العديد من اختبارات بل باستخدام جسيماتٍ متشابكةٍ، وقد أظهرت نتائجَ غير متوافقةٍ مع القيود التي تفرضها المتغيرات الخفية المحلية. من غير الممكن تقديم هذه المفاهيم بأكثرَ من طريقةٍ سطحيةٍ دون تقديم الرياضيات الفعلية المعنية؛ لا يتطلب فهم ميكانيكا الكم معالجة الأعداد المركبة فحسب، بل أيضًا الجبر الخطي والمعادلات التفاضلية ونظرية الزمر وموضوعاتٍ أخرى أكثر تقدمًا.[note 2] وفقًا لذلك ستقدم هذه المقالة صياغةً رياضيةً لميكانيكا الكم ومسحًا لتطبيقاتها على بعض الأمثلة المفيدة التي جرت دراستها كثيرًا.

هوامش

. : لن يُغير القيمة بمرور الوقت. تُعمم هذه العبارة رياضيًا أي عامل هرميتي A
A يمكن أن يولد مجموعةً من العوامل الوحدوية ذات معلماتٍ بواسطة متغير t
t . في ظل التطور الناتج عن A
A ، سيجري حفظ أي B
B يمكن ملاحظته ويتنقل مع A
A . علاوةً على ذلك إذا كان B
B محفوظًا بالنمو تحت A
A ، فإن A
A يجري حفظه في ظل النمو الناتج عن B
B . يشير هذا إلى نسخةٍ كميةٍ للنتيجة التي أثبتتها إيمي نويثر في الميكانيكا الكلاسيكية (لاغرانج): لكل تناظرٍ قابلٍ للاشتقاق الهاملتوني يوجد قانون حفظ مطابق.

الآثار الفلسفية

المقالة الرئيسة: تفسيرات ميكانيكا الكم
مُشكلات غير محلولة في الفيزياء: هل يوجد تفسير مفضل لميكانيكا الكم؟ كيف يمكن للوصف الكمي للواقع، الذي يتضمن عناصر مثل “تراكب الحالات” و”انهيار الدالة الموجية”، أن يؤدي إلى الواقع الذي ندركه؟ أثارت ميكانيكا الكم منذ نشأتها نقاشاتٍ فلسفيةً متنوعةً، وطُوِّر لها العديد من التفسيرات. تركز الحجج على الطبيعة الاحتمالية لميكانيكا الكم، والصعوبات المتعلقة بانهيار الدالة الموجية، ومسألة القياس الكمي ذات الصلة، والكم غير الموضعي. ولريما كان الاتفاق الوحيد في هذه المسائل هو غياب الإجماع العلمي حول أيِّ منها. قال ريتشارد فاينمان ذات مرةٍ: «أعتقد أنني أستطيع القول بثقةٍ إنه لا أحد يفهم ميكانيكا الكم.» أما ستيفن واينبرج فأعرب: «لا يوجد الآن في رأيي تفسير مرضٍ تمامًا لميكانيكا الكم.» تُجمَع آراء نيلز بور وفيرنر هايزنبيرغ والفيزيائيين الآخرين في الغالب معًا تحت مسمى «تفسير كوبنهاغن». ووفقًا لهذه الآراء مجتمعةً فإن الطبيعة الاحتمالية لميكانيكا الكم ليست سمةً مؤقتةً سيستبدل بها -في نهاية المطاف- نظرية حتمية، ولكنها تشكل بدلاً من ذلك التخلي النهائي عن الفكرة الكلاسيكية «السببية». لقد أكد نيلز بور -على الخصوص- أن أي تطبيقٍ محددٍ جيدًا للشكلية الميكانيكية الكمية يجب أن يشير دائمًا إلى الترتيب التجريبي، بسبب الطبيعة التكاملية للأدلة التي يُحصل عليها في ظل مواقفَ تجريبيةٍ مختلفة. ظلتِ التفسيرات من نمط [مدرسة] كوبنهاغن شائعةً حتى في القرن الحادي والعشرين. كان ألبرت أينشتاين -أحد مؤسسي نظرية الكم القديمة- ممتعضًا من فشلها الواضح في احترام بعض المبادئ الميتافيزيقية العزيزة، مثل الحتمية والمحلية. تُعرف حوارات أينشتاين المديدة مع نيلز بور حول ماهية ميكانيكا الكم وحالتها باسم مناظرات بور-أينشتاين. رأى أينشتاين أن على ميكانيكا الكم أن تكون نظريةً تحظر صراحةً الفعل عن بعد، وجادل بأن ميكانيكا الكم غيرُ مكتملةٍ، وهو رأي كان صحيحاً ولكنه غيرُ جوهريٍّ ومماثلٌ لكيفية صحة الديناميكا الحرارية، لكن النظرية الأساس الكامنة وراءها هي الميكانيكا الإحصائية. وفي عام 1935 نشر أينشتاين ومعاونوه بوريس بودولسكي وناثان روزين حجةً مفادها أن مبدأ المكان يعني عدم اكتمال ميكانيكا الكم، وهي تجربة فكرية أطلق عليها فيما بعد مفارقة أينشتاين-بودولسكي-روزين (حجة EPR).[note 6] عام 1964 أظهر جون بل -فيما يُعرف الآن باسم مبرهنة بل (أو عدم مساواة بل)- أن مبدأ (EPR) الخاص بالمكان -مقرونًا مع الحتمية- كان في الواقع غير متوافقٍ مع ميكانيكا الكم؛ فقد تضمن قيودًا على الارتباطات التي تنتجها أنظمة البعد، والتي يمكن للجسيمات المتشابكة أن تنتهكها. مذ ذاك الحين أجري العديد من التجارب للوصول إلى هذه الارتباطات، وكان مُؤدى نتيجة هذه التجارب أنها تنتهك في الواقع عدم مساواة بل، وبالتالي زيف اقتران المكان بالحتمية. تُظهِر ميكانيكا بوم إمكانية إعادة صياغة ميكانيكا الكم بهدف جعلها حتميةً، ولكن -وبصريح العبارة- على حساب جعلها غير محليةٍ. لا تنتسب الدالة الموجية إلى نظامٍ ماديٍّ فحسب، بل تنسب أيضًا موقعًا حقيقيًا يتطور تطوراً قطعيًّا بموجب معادلةٍ توجيهيةٍ غير محلية. يجري تقديم تطور النظام الفيزيائي في جميع الأوقات من خلال معادلة شرودنغر مقرونةً مع المعادلة التوجيهية؛ لا يوجد أبدًا انهيار للدالة الموجية، وهذا -بدوره أيضًا- يحل معضلة القياس. يرى تفسير إيفرت للعوالم المتعددة -الذي صيغ في عام 1956- أن الاحتمالات التي وصفتها نظرية الكم تحدث كلُّها متزامنةً في وقتٍ واحدٍ في كونٍ متعددٍ يتألف على الأرجح من أكوانٍ متوازيةٍ مستقلة. ينتج هذا من إزالة بدهيّة انهيار الحزمة الموجية. إن جميع الحالات الممكنة للنظام المَقيس وجهاز القياس -جنبًا إلى جنبٍ مع المراقب- موجودة في تراكب كمي حقيقي. ونحن ندرك السلوكَ غيرَ الحتمي -الذي تحكمه الاحتمالات- في حين إن الكون متعدد [الأكوان] حتمي، وماذاك إلا لأننا لا نلاحظ الكون المتعدد ككل، ولكن كونًا واحدًا موازيًا فقط في كل مرة. كانتِ الطريقة التي يُفترض أن يعمل بها هذا الكون موضوعًا بالضبط لكثيرٍ من الجدل، وقد بُذلت محاولات عدة لفهم هذا واستنباط قاعدة بورن -من ثَمَّ- دونما إجماعٍ حول ما إذا كانت تلك القاعدة ناجحةً أم لا.[note 7] ظهرت ميكانيكا الكم العلائقية في أواخر التسعينيات مشتقاً حديثاً لأفكارٍ من نمط [مدرسة] كوبنهاغن، وجرى تطوير ميكانيكا بيشان الكمية (أو اختصارًا QBism) بعد بضع سنوات.

شرح مبسط

ميكانيكا الكم[ar 1] أو ميكانيك الكم[ar 2] أو الميكانيك الكمومي[ar 3] أو الفِيقِيَاءُ (أصلها من فاق يفوق، لأنّها تبحث في عالم الظواهر فائقة الصغر وفائقة السرعة)[ar 4] هي نظرية رئيسة في الفيزياء توفر وصفًا للخصائص الفيزيائية للطبيعة على مقياس الذرات والجسيمات دون الذرية.[2] وميكانيكا الكم (أو الحركة الكمومية) هي الأساس الذي تقوم عليه فيزياء الكم وكيمياء الكم ونظرية الحقل الكمومي وتقانة الكم وعلوم المعلومات الكمومية.

 
التعليقات

شاركنا رأيك



أقسام شبكة بحوث وتقارير ومعلومات عملت لخدمة الزائر ليسهل عليه تصفح الموقع بسلاسة وأخذ المعلومات تصفح هذا الموضوع [ تعرٌف على ] ميكانيكا الكم ويمكنك مراسلتنا في حال الملاحظات او التعديل او الإضافة او طلب حذف الموضوع ...آخر تعديل اليوم 05/05/2024


اعلانات العرب الآن